Pengantar Quantum Computation

a. Pendahuluan

Komputasi kuantum merupakan bidang studi yang memfokuskan pada bidang teknologi komputer yang berkembang atas dasar prinsip-prinsip dasar teori kuantum, misalnya superposisi dan keterkaitan untuk melakukan operasi data. Teori kuantum menjelaskan sifat dan perilaku energi dan materi pada kuantum.
Prinsip dasar komputer kuantum adalah sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, serta mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika yang baru yang sesuai dengan prinsip kuantum.
Teori Kuantum
Sejak tahun 1990, teori kuantum mulai berkembang dengan presentasi oleh Max Planck ke himpunan Fisika Jerman. Max Planck memperkenalkan ide bahwa energi ada dalam uni individu (‘kuanta’). Perkembangan selanjutnya yang dilakukan oleh sejumlah ilmuwan selama tiga puluh tahun berikutnya menyebabkan pemahaman modern tentang teori kuantum.
b. Entaglement
Entanglement atau ketertarikan kuantum adalah salah satu prinsip utama dari fisika kuantum. Entanglement kuantum adalah beberapa partikel terkait dalam sedemikian rupa sehingga pengukuran keadaan kuantum satu partikel menentukan kemungkinan keadaan kuantum dari partikel lainnya.
Secara keseluruhan, superposisi kuantum dan entanglement menciptakan daya komputasi yang sangat ditingkatkan. Dimana 2 bit di komputer biasa dapat menyimpan hanya satu dari empat konfigurasi biner (00,01,10 atau 11) pada waktu tertentu, register 2 qubit dalam sebuah koputer kuantum dapat menyimpan semua empat nomor secara bersamaan, karena qubit masing-masing mewakili dua nilai. Jika lebih qubit ditambahkan, kapasitas meningkat diperluas secara eksponensial.
c. Pengoperasian Data Qubit
Qubit (kuantum bit), adalah mitra dalam komputasi kuantum dengan biner atau bit dari komputasi klasik. Qubit adalah unit dasar informasi dalam komputer kuantum. Dua aspek yang paling relevan dengan fisika kuantum adalah prinsip superposisi dan entanglement.
d. Quantum Gates

Quantum Logic Gates, Prosedur berikut menunjukkan bagaimana cara untuk membuat sirkuit reversibel yang mensimulasikan dan sirkuit ireversibel sementara untuk membuat penghematan yang besar dalam jumlah ancillae yang digunakan.
– Pertama mensimulasikan gerbang di babak pertama tingkat.
– Jauhkan hasil gerbang di tingkat d / 2 secara terpisah.
– Bersihkan bit ancillae.
– Gunakan mereka untuk mensimulasikan gerbang di babak kedua tingkat.
– Setelah menghitung output, membersihkan bit ancillae.
– Bersihkan hasil tingkat d / 2.
Setiap perhitungan klasik dapat dipecah menjadi urutan klasik gerbang logika yang bertindak hanya pada bit klasik pada satu waktu, sehingga juga bisa setiap kuantum perhitungan dapat dipecah menjadi urutan gerbang logika kuantum yang bekerja pada hanya beberapa qubit pada suatu waktu. Perbedaan utama adalah bahwa gerbang logika klasik memanipulasi nilai bit klasik, 0 atau 1, gerbang kuantum dapat sewenang-wenang memanipulasi nilai kuantum multi-partite termasuk superposisi dari komputasi dasar yang juga dilibatkan. Jadi gerbang logika kuantum perhitungannya jauh lebih bervariasi daripada gerbang logika perhitungan klasik.
e. Algoritma Shor
Sebuah komputer kuantum tidaklah sama dengan komputer klasik. Hal ini tidak dalam hal kecepatan saja, namun juga dalam hal pemrosesan informasi. Sebuah komputer kuantum dapat mensimulasikan sebuah proses yang tidak dapat dilakukan oleh komputer klasik. Hal ini membuat para ilmuwan harus memiliki paradigma baru dalam hal permrosesan informasi.
Selama ini, sebuah komputer bekerja didasarkan hukum-hukum fisika klasik. Informasi didefinisikan secara positif, direpresentasikan secara material dan diproses berdasarkan hukum-hukum fisika klasik. Ketika para fisikawan masuk ke dalam teori kuantum dalam pemrosesan informasi, mereka diharuskan untuk mengubah pandangan mereka mengenai pemrosesan informasi. Lebih jauh lagi, mereka harus mengembangkan sebuah sistem logika baru yang mengikuti hukum-hukum fisika kuantum. Sistem logika baru ini disebut dengan logika kuantum. Sistem logika kuantum berbeda sama sekali dengan sistem logika yang selama ini dipakai, yaitu sistem logika yang dikembangkan oleh Aristoteles.
Dengan sistem logika yang baru, para ilmuwan harus memikirkan sebuah algoritma yang berbeda untuk memproses informasi. Inilah yang sebenarnya merupakan inti dari komputer kuantum. Beberapa algoritma telah dikembangkan dan yang di antaranya telah berhasil ditemukan adalah algoritma Shor yang ditemukan oleh Peter Shor pada tahun 1995. Lewat algoritma Shor ini, sebuah komputer kuantum dapat memecahkan sebuah kode rahasia yang saat ini secara umum digunakan untuk mengamankan pengiriman data. Kode ini disebut kode RSA. Jika disandikan melalui kode RSA, data yang dikirimkan akan aman karena kode RSA tidak dapat dipecahkan dalam waktu yang singkat. Selain itu, pemecahan kode RSA membutuhkan kerja ribuan komputer secara paralel sehingga kerja pemecahan ini tidaklah efektif.
Sebagai contoh, seorang pemecah kode akan membutuhkan waktu 8 bulan dan 1.600 pengguna internet jika ia akan memecahkan kode RSA yang disandikan dalam 129 digit. Jika hal ini mungkin, pengirim data hanya perlu menambahkan digit pada kode RSA-nya agar para pemecah kode membutuhkan waktu yang lebih lama lagi untuk memecahkan kuncinya. Sebagai gambaran, pemecahan kode RSA 140 (140 digit) akan membutuhkan waktu yang lebih lama dari umur alam semesta (15 miliar tahun). Namun, jika pemecah kode menggunakan komputer kuantum, mereka dapat memecahkan kode RSA 140 hanya dalam waktu beberapa detik. Hal inilah yang membuat waswas para pengguna channel komunikasi rahasia saat ini untuk melakukan pengiriman data secara aman.
Selamat menggali ilmu semoga bermanfaat…
Untuk pertanyaan, Saran dan kritik silahkan tinggalkan balasan di kolom komentar.
Advertisements